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Executive Summary

This final report contains a summary of the principle finding.
Experimental and Theoretical details are presented in greater detail in a
series of Appendices. This format was chosen since this report may be read
by individuals with specific interests thereby enabling the reader to find
the relevant detailed information in one place.

The principle research objectives of the grant were:

1) Investigate the infrared and optical receiving properties of STM
irradiated tunnel junctions and to determine the effects of geometry,
temperature, and materials properties on the receiving properties.

2) Investigate the proposal that the electron transit time in irradiated
vacuum tunnel structures can be characterized in terms of the natural time
scale provided by the laser frequency and to determine the physical
mechanisms limiting the response of the tunnel device.

Several of the significant accomplishments achieved were:

1)  Successfully fabricated atomically sharp silicon emitter embedded in
a thin, 30 Angstrom, tunnel oxide. This represented the first fabrication of
the solid state equivalent of a STM as a circuit element.

2)  Extended the fundamental understanding of the limitations of the
planar Fowler-Nordheim theory when applied to tunneling from
atomically sharp emitter tips by calculating the fields induced at these tips
using a more realistic prolate-spheroidal co-ordinate model. This is a
marked deviation from the purely planar Fowler-Nordheim
approximation. This calculation represented the solution to a previously
unsolved problem in electrostatics. A fully three dimensional analytic o
solution for a sharp tip and a planar base was found. The analytic solution =l ’

included the effects of the i Lmage and multiple image potentials in the
model calculation. .




3)  Calculated the effects of inelastic processes in time dependent
tunneling in an STM junction using a kinetic formulation of the transfer
Hamiltonian method.

4)  Designed and built a digitally controlled, network accessible STM
which affords remote accessing over the university network and real time
data acquisition. All aspects of the experimental control of the STM are
under computer control, including coarse and fine approach, settling and
pulse control of laser and incoherent sources.

5)  Determined that the role of incoherent photoassisted tunneling in the
visible region is minimal. Incoherently stimulated tunnel currents were
below 0.01 nanoamperes. This is contrasted with typical STM tunnel
currents on the order of 1 nanoampere.

6) Preliminary experiments of the role of surface modification in the
Fowler-Nordheim or field emission range of tunneling appears to be
associated with a field effect and not with thermal evaporation. This has
important implications in the fabrication of 10-20 Angstrom feature sized
devices. Experiments are continuing on establishing the mechanism for the
fabrication of nanosized dots on the order of 20 Angstrom diameters and 10
Angstrom depth.

7)  Developed the imaging and control software to monitor surface
modification between laser pulses to establish greater accuracy in nano
distance measurements which affect determination of tunnel times.

These investigation have important payoff to the Air Force in the areas of
surface modification and nano-scale fabrication and the area of high speed
tunnel devices acting as either switching elements or as infrared and optical
detectors.




Introduction

Selective room temperature infrared and laser receivers incorporated into
silicon integrated circuits have important implications in high speed
infrared signal processing and optical computation. Although a wide range
of IMI-V and II-VI compound semiconductors exist with stoichiometrically
adjustable band gaps these materials must be heteroepitaxially grown by
MBE or MOCVD, and as such are costly and difficult to produce. In
addition long wavelength infrared detectors using extrinsic silicon require
cooling to liquid helium temperatures.

Infrared laser frequency mixing, and tunnel time measurements using laser
rectification in STM junctions have offered the opportunity to explore
variable gap metal on metal and metal on silicon tunnel devices in a
controlled way. The sharp or pointed tip geometry introduces a geometric
asymmetry into the tunnel junction which produces a field enhancement
for tunneling from the emitter tip. This tunneling asymmetry provides a
mechanism for rectifying an alternating laser field.

GANT Fabrication

Atomically sharpened silicon emitters are formed from a heavily doped n-
type substrate. The emitters form small field emission-like structures that
are positioned within 30 Angstroms from a planar substrate by growing a
thin tunnel oxide on the silicon emitter. A thicker deposited oxide is used to
planarize the surrounding emitter surface. One of the drawbacks to
fabricating nano-sized junctions with macroscopic integrated circuit
processes is the device variability which is introduced as the feature size
becomes progressively smaller. Wet chemical etch as well as reactive ion
etching of the thick planarizing oxide opens windows in the oxide which
are subject to variation due to the diffusive nature of the etching process.
The opening in the thick oxide effectively determines the emission area for
each of the field emitters in the array. The critical spacing between anode
and cathode is unaffected since that critical distance is set by the




subsequent growth of the tunnel oxide atop the exposed emitter tip. The
fabrication and the electrical testing of the devices is presented in
Appendix A

A statistical analysis of the emission area variability is important in
determining the total emission current developed by the tunnel array. This
realization led to an investigation of the three important factors which will
affect the final design rules for the fabrication of GANT devices.

The factors are:

1) The three dimensional nature of the emitter field in the tunnel junction.
2) The effective emission area which may be significantly different from the
oxide hole opening.

3) The statistical variability of the tip radius formed by stress inhibited
thermal oxidation.

Three dimensional tunnel field

In all previous calculations of the electric field in an STM junction we have
used the prolate spheroidal model and calculated the on-axis electric field.
This effectively reduced the calculation of the electric field in the tunnel
junction to a one-dimensional case. At the time this was appropriate since
the geometrically correct on axis solution was obtained analytically it
represented the maximum tunnel junction field and was subsequently used
in the WKB approximation to calculate the maximum tunnel current
density.

The analytic solution for the full three dimensional field configuration
including a fully three dimensional image and multiple image interactions
had remained an unsolved problem. Although numerical methods have
been suggested these solutions suffer from the usual problem of accuracy
without a comparison to an analytic solution. In Appendix B the details and
results of that calculation are presented.

The importance of this solution for tunneling in geometrically asymmetric




junctions should not be underestimated. With a knowledge of the spatial
dependence of the electric field reasonably accurate estimates of emission
areas are possible. These results are discussed in Appendix B.

Statistical Analysis of Emitter Tip Variation and Effect on
Current

The formation of atomically sharp and nearly atomically sharp field
emitters in silicon rests on a technique known as stress inhibited oxidation.
This oxidation process and well as all other oxidation processes rely on the
diffusion of the oxidizing species. For nearly atomically sharp tips the
critical oxidation area is confined to a region less than 100 X 100 Angstroms
in size. Fluctuations in the oxidizing agent concentration produce
variations in the final emitter shape. On the average this variation may at
first seem negligibly small. In fact this variation has a exponentially large
effect of the final current density.

Unlike the case of planar tunnel structures and isoplanar integrated
circuits these devices follow a Fowler Nordheim-like current voltage
characteristic. The exponential nature of the current density on the tunnel
field is reflected directly in the sharpness of the respective tip radii. A small
variation in the tip radius produces a large change in the emitter current.

In the analysis we have performed we have analytically derived
probability distribution functions for arrays of emitter devices for two
cases: any Gaussian distribution of tip radii and any Rayleigh distribution
of tip radii. The controlling current voltage relationship was assumed to
follow a classical Fowler-Nordheim law. This result is the first time that an
analytic probability distribution function has been obtained for arrays of
field emitter devices. This result becomes an important analytic tool in
characterizing process variation and predicting array performance.

These results are presented in detail in Appendix C and are generally
applicable to field emitter arrays independent of the tip-anode spacing..




Inelastic Processes in Tunneling

The shape of the tunnel current as a function of tip-anode spacing is
determined using kinetic theory and the transfer Hamiltonian method. The
photo-assisted inelastic tunneling current is given in terms of laser
frequency, electric field ( which is calculatable from the exact three
dimensional solution given in appendix B), and appropriate barrier
parameters for a materially asymmetric junction. The calculation of the
laser stimulated inelastic current is based on a free electron model. The
technique, however, is extendable to include the effects of band structure.

The results of this calculation are presented in Appendix D.

Digitally Controlled STM

A detailed description of the computer controlled STM is presented in
Appendix E. The STM itself is directly operated from remote sites through
the university network. Remote operation proved to be necessary given the
location of the Nanostructures and Materials Laboratory on the 7th Floor of
the Engineering Building. The location of the laboratory on the 7th floor is
adjacent to the building elevator shaft which proved a regular source of
vibrations which were damped. Additionally the build is adjacent to a
trolley line which produces significant low frequency noise. Successful
operation of the STM and the need to accurately control the tip-anode
spacing required that virtually all experimentation be performed between
midnight and six am in the morning. The experiments are set up during the
day and the data acquisition can be accomplished from adjacent offices and
via long distance telephone. Without the remote accessing of the system the
noise characteristics of the building would have dominated.

A discussion of the computer system designed and used through out the
grant t appear in Appendix E.




Surface Modification

The determination of the operational tunnel time in a laser irradiated STM
requires a controlled tip-base spacing. During the experimental calibration
of the system in preparation for the laser experiments an unexpected
modification of the base surface was detected. The gold base became pitted
giving rise to spurious tip-base spacings. This modification of the surface
did not occur when the STM was operating in the imaging or normal
tunneling mode. This mode is defined as tip-base spacings such that the
STM 1V characteristic is linear- that is spacings less than 10 Angstroms.
Surface modification occurred only when the STM operated in the Fowler-
Nordheim region-highly non-linear current voltage characteristic, and only
for the case when the tip was positively biased. This condition corresponds
to the forward bias case during laser irradiation.

Preliminary results indicate the creation of circular and elliptical pits is not
related to heating of the gold anode. At the time of this report preliminary
results indicate that the creation of the nano-size pits is a field effect.
Additional temperature calculations and experiments to determine the
mechanism for the pit creation are currently underway in an effort to
ascertain the formation mechanism.

These results on surface modification during static IV testing of the junction
came about due to an upgrade we developed for our imaging software.
Since the detailed structure of the surface is important in maintaining
constant tip-base spacings planar anode regions are sought for IV testing.
Once a region is selected it is extensively mapped. Static current voltage
measurements are performed with re-imaging before and after each IV is
taken. This is a tedious and time consuming procedure. During such testing
the field induced pits were discovered.

An important series of experiments are about to be started which require
further modifications to the software. Since this surface modification is
believed to be a field induced effect- the transient or induced current may
play the dominant role in creating the pits. Induced currents occurring
when the system is switching voltages may be further reduced by changing
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the number of incremental voltage steps and hence eliminate the pitting.
On the other side of the issue is the important observation that surface
modification in the STM junction is related to field and not temperature

effects could have a significant impact of nano-scale surface modification.

Figures of nanoscale field induced pits are shown in Appendix F.

Laser Induced Thermoelectric Effects in STM Junctions

We have calculated the spatial and temporal temperature distributions for a
conical metal emitter under laser irradiance. The full three dimensional
heat diffusion equation is solved simultaneously wit h the Fourier equation
for heat flux, assuming no radiation losses. Both Joule heating and
Thomson thermoelectric effects were studies.

The details of the Green's function method used in the calculation are given
in Appendix G.
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Appendix A
Fabrication and Testing of Geometrically Asymmetric
Tunnel Structure

Geometrically Asymmetric Nano-tunnel Structures
D.C.Schweitzer, T.E. Sullivan

Department of Electrical Engineering
Temple University, Philadelphia, PA 19122
R.B. Marcus

Department of Chemistry

New Jersey Institute of Technology
Newark, N.J.

Paul H. Cutler

Department of Physics

The Pennsylvania State University
University Park, PA 16802

Introduction

In recent years there has been renewed interest in the use of vacuum microelectronic
devices for flat panel displays and rf generation. In this paper we extend those
application to the development of high speed optical and infrared detectors. The
development of both the point contact diode and the STM tunnel junction have shown
that novel geometrically asymmetric nanotunnel device structures can be used as an
alternative method of detection for high speed optically modulated signals. One of the
most promising device structures under investigation are the at atomically sharpened
silicon field emitters. While these devices are similar to the electrochemically etched
metal emitters used in both the scanning tunneling microscope and field ion
microscopes, atomically sharpened silicon emitters have many advantages over these
devices.

We present the results on the development of a novel asymmetric tunnel structure
which can be directly incorporated into a silicon integrated circuit using standard
semiconductor processing technologies. This device structure is referred to as a
Geometrically Asymmetric Nanotunnel Structure or GANT structure. The GANT
structure consists of an atomically sharpened silicon field emitter separated from a
planar metal electrode by a thin ( d< 30 Angstroms) tunnel gap. It will be shown that an
emitter processing scheme such as this facilitates:(i) the fabrication of large arrays of
identical field emitter elements, (ii) the fabrication of controllable, repeatable cathode to
anode contact geometries, and (iii) the incorporation of field emission devices into
integrated circuits using current semiconductor processing technologies.

In addition, electrical (I-V) characteristics show a current density enhancement of
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vacuum tunnel gap, into an integrated circuit has been greatly simplified through the
use of a thermally grown silicon-dioxide barrier, The use of a low temperature, thermally
grown, silicon dioxide film has been shown to provide an accurate and repeatable
method for forming thin tunnel gap spacings < 50 Angstroms.

Although the GANT structure presented in this paper differs in many ways from an STM
tunnel junction, it has been shown that this design scheme has a number of advantages
over STM/point contact tunnel structures. These advantages include (i) fabrication in
large arrays, (ii) fabrication with a known, controllable, and repeatable contact geometry
and (iii) can be readily incorporated into standard integrated circuits using current
processing technologies.
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Three-dimensional electrostatic potential, and potential-energy barrier,

near a tip-base junction
Lo-Hong Pan and Thomas E. Sullivan

Depariment of Electrical Engineering, Temple University, Philadelphia, Pennsylvania 19122

Vallorie J. Peridier

Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122

Paul H. Cutler and Nicholas M. Miskovsky

104 Davey Lab, The Pennsylvania State University, University Park, Pennsylvania 16802
(Received 28 March 1994; accepted for publication 17 August 1994)

The geometry of an atomically sharp or nearly atomically sharp tip in proximity to a planar anode
may be closely approximated in the prolate-spheroidal coordinate system. An exact
three-dimensional electrostatic-potential solution for a free charge in such a tip/base junction is
given in this letter, including calculations for both the symmetrical on-axis case and the asymmetric
off-axis case. An exact solution for the potential-energy barrier is also given; this solution has
immediate applications in three-dimensional tunneling studies and in calculations of electron
trajectories in micron- and submicron-sized field-emitter arrays. © 1994 American Institute of

Physics.

We report that an exact three-dimensional solution to the
Laplace/Poisson equation has been obtained in the prolate-
spheroidal coordinate system. This result is significant be-
cause the prolate-spheroidal coordinate system provides an
accurate geometrical representation of an emission tip close
to a planar anode, a geometry which arises in scanning tun-
peling microscope devices (STM) and related tunnel struc-
turs. In this letter the first off-axis calculation for the poten-
tial due to a free electron in such a voltage-biased tip/base
junction is given.

Theoretical understanding of quantum-electronic phe-
nomena in nanoscale devices is critical in the continued de-
velopment of nanoelectronics. As important class of
quantum-electronic devices consist of a biased tip/anode or
tip/base junction, in which the tip is atomically sharp (rep=2
nm) and close (3 nm) to the planar surface. For example,
such devices include scanning tunneling microscopes (STM)
and geometrically asymmetric nanotunnel structures
(GANTS).! Of particular interest is the capability to quantify
the wnneling current for such devices, a calculation which,
in turn, requires an accurate estimate of the induced potential
energy of a point charge in the tip/base junction. Much of the
theoretical work to date has been carried out using an effec-
tively one-dimensional or planar apalysis, and while there
are some devices (e.g., quantum-well heterostructures) for
which this one-dimensional approach proves to be an ad-
equate strategy, it is clearly not an ideal geometrical approxi-
mation for a three-dimensional device utilizing a tip/base
junction. However, it emerges that the geometrical features
of devices such as the STM may be closely approximated in
the prolate-spheroidal coordinate system, with the tip and
base each represented as a hyperboloid surface.

A

energy barrier. It is worthwhile to note that exact solutions
such as these permit the calculation of these fields to arbi-
trary accuracy, even in regions of severe spatial variation;
calculations are given here for the on- and off-axis case of a
point charge in a biased tip/anode junction.

To begin the analysis, the prolate-spheroidal coordinate
system is given by?

x=a sinh(u)sin{v)cos( ),
y =a sinh(u)sin(v)sin( ¢), (1)

z=a cosh{u)cos(v),

where a is one-half the distance between the hyperboli foci;
curves corresponding to constant v are hyperboloid surfaces,
while those for constant ¥ are prolate-spheroidal surfaces.
Geometrically the problem has axial symmetry, and if the
charge is on the symmetry axis u=0 the solution for the
resulting electrostatic potential is effectively a one-
dimensional problem which could be addressed, say, with a
method-of-images technique.3* However, if the charge is lo-
cated at an off-axis position then the problem for the electro-
static potential is fully three dimensional.

Starting with (1), the variable transformations
§=cosh(u), n=cos(v), generate a coordinate system defined
by

x=aVE-1V1- 77 cos($),
y=aVE-1V1- 7 sin(¢), 2

z=afn.
The region between the two hyperboloid surfaces is the
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note that the second solution for K7 (x) is K7(— ). From
(8) it is evident that the solutions for S(7) are also conical
functions. Consequently, the general solution for V,, noting

that the eigenvalues m are discrete and the eigenvalues 7are
continuous, is

V=3 (2-8.m)c08(m).
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K7 (= 1)K (1) = K7(n)K7(— 1)
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Here, the charge is located at x.=(§,,7.,0), and the
constant o7 in (12) is

7 tanh( 77) r(*ﬂ._"-"') :

(13)
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m=0 * = cosh(#T) T(d+ir+m) )
- (11)
mgrm - L] d ,
Io [B7KT(m)+ CTKT (= D) K- (E)dr Thus the electrostatic potential V (4) is calculated from
with (6), (7), and (11), and the potential energy ® is
By =—— aTKT(EIKT (- ). S=glVet¥a: (14
4¢0a v
m m m m where V, is given by (6) and V, by (11). Also, it can be
K7(7)K7(= m) ~K7(= 7.)K7 (7,) , (12) shown’ tl‘:at the electric field on thle emitter surface at 7=17,,
K:(’I:)K:'("’h)'xf(“ﬂl)Kf(ﬂz) E,,is
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Note that the first term in Eg. (15) is the emitter-surface
electric field due to the bias potential which is independent
of the charge location; the second term is the interaction field
produced by the induced surface-charge distributions on the
tip and base and the free-charge located at x.=(¢..7..0).
~ Figure 2 shows computed contour plots of the potential
V due to a point charge in a voltage-biased tip—base junction,
for both the on-axis and an off-axis case. In both plots:
7m=0.9 (which corresponds to a tip haif-angle of 0.45 radi-
ans or 26°); the value of a is chosen so that the radius of the
tip at the apex is 20 A; and the bias voltage of the tip relative
to the base is 5 V.
In conclusion, an exact three-dimensional solution for
the electrostatic potential due to a charge in & voltage-biased
tip/anode junction, modeled in the prolate-spheroidal coordi-

nate system, has been obtained. The results of this study will

be used for characterizing the tunneling current at a tip/anode

Appl. Phys. Lett,, Vol. 85, No. 17, 24 October 1994
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junction using a three-dimensional tunneling analysis, and
will be used 1o carry out a systematic study of off-axis tun-
neling and its impact on the estimation of active emission
areas in nanosized devices.

This work was supported in part by AFOSR Grant No.
49620-92J-0202P00001.

1T, E Sullivan, Y. Kuk, and P. H. Cutler, IEEE Trans. Electron Devices LI
31, 2659 (1989).

3G. Arfken, Mathematical Methods for Physicists, 20d ed. (Academic, New
York, 1970), pp. 103-106.

3p. H. Cutler, J. He, J. Miller, N. M. Miskovsky, B. Weiss, and T. E.
Sullivan, Prog. Sorf. Sci. 42, 169 (1993).

4]. He. P. H. Cutler, N. M. Miskovsky, T. E. Feuchtwang, T. E. Sullivan,
and M. Chung, Surf. Sci 246, 348 (1991).

SE. W. Hobson, Theory of Spherical and Ellipsoidal Harmonics (Chelsea.
New York, 1965).

‘R G. van Nostrand, J. Math. Phys. 33, 276 (1954).

7V, J. Peridier, L. H. Pan, and T. E. Sullivan (unpublished).

Pan et al. 3



FIG. 1. (a) The problem for V, the tota! potential energy. (b} The subsidiary
problem for V,,dnpownuuenergyduewmedp/modem(c)m
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The Laplacian operator is linear, and consequently, the solu-
tion for the potential V can be expressed as the sum of two
subsidiary potentials,

V= V'+Vc. (4)

Here, V, is the potential due to the bias voltage applied to
the tip-plate junction, for instance Vo, and V. includes the
effects of the charge’s interaction with the induced surface-
chargedisu'ibuﬁonontbebaseandtip; note that this surface
change is distributed so as to yield zero potential on these
conducting surfaces. Schematics associated with V and the

+

3

_ subsidiary problems V,, V. are given in Fig,. 1.

From Fig. 1(b) it is evident that the problem for Vp, the
potential due solely to the potential-bias Vo between the tip
and anode, is independent of £, ¢, and the physical location
of the charge x, . Thus, the equations governing V, are

d d
o (1"72)3; Va=0, Vs(7)=V,, Vy(m)=0.
(5)
“he solution for Vz may bs found by elemeatary methods

)

NEEE)

1¢ potential V¢ due to the charge satisfies the Poisson equa-
)nandmaybewrinenasthemmofagencnl(homoge-
ous) and a particular solution, viz.

©)

q
Ve Tmen—xg tVr- ™

> interaction potential V, satisfies the Laplace equation
has homogeneous boundary conditions; however, since
potentialhmllythreedimensiomlitisconveniemw
>arate” the solution into a product of functions in each
dinate direction, for instance V,=R(§)S(n)F (). Ap-
1gtheuplacianopemot(3)onv,inthissepamed

Appl. Phys. Lett, Vol. 65, No. 17, 24 Ontakar <ans

form and designating the separation constants as A and m?,
the solutions in each coordinate variable are governed by

#F

W-m’r-o,
d dR) m?
s €] -[a+ e @

9 s m?

5{(1 - q‘);;,-} +{A =7 }s-o.

To obtain F(¢) the charge may be set, with no loss of
generality, to an azimuthal location $=0, so that the solu-
tions for F(¢) will be of the form cos(m ¢). '

The boundary conditions for V, are bomogeneous at 7,,
7; this suggests that R(£) must be expanded in an orthogo-
nal set of functions and thus the constant A must be negative,
Setting A=n(n+1) gives associated Legendre polynomials
PJ with complex degree n=—4=+ir. Following Hobson,’
designate

KM (p)mP=, ., (1); | ©)

the functions X7 are called conical functions, and the or-
thogonality relation for the conical functions is®

FIG. 2 (a)Cmofeompoemhlfaadmponhsymnwy
;k@)&mﬁmpmfamoﬂﬂhmhuphmof
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note that the second solution for K7 () is K7(—u). From
(8) it is evident that the solutions for S(7) are also conical
functions. Consequently, the general solution for V,, noting
that the eigenvalues m are discrete and the eigenvalues 7 are
continuous, is

V=2 (28 m)cos(m).

m=0
- (11)
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with
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Here, the charge is located at x,=(§.,7.,0), and the
constant of in (12) is

I'(§+i_f—m) ?

7 tanh( 77)
ay=

= cosh(wT)

T(d+ir+m) (13

Thus the electrostatic potential V (4) is calculated from
(6), (7), and (11), and the potential energy @ is

¢°=q(V,+V,), (14)

where V is given by (6) and V, by (11). Also, it can be
shown’ that the electric field on the emitter surface at »=17,,
E,, is

1

E{=

1=m 1+

+
a \/f’—vf\'l-nfm(””“”") 2maco - giVl-7} m=0

C Y (—1)™(2=6,m)

I. F(i+ir—m) K EIRE)] K™(= 7K™ (1)~ KT (9K~ 173) 0
X d t»anh( r( c)K': ’
cos(me) | dr) kT ey KT (I0KT(— 72)— K2 (= 1)K (72)

Note that the first term in Eq. (15) is the emitter-surface
electric field due to the bias potential which is independent
of the charge location; the second term is the interaction field
produced by the induced surface-charge distributions on the
tip and base and the free-charge located at x.= (¢, 7.,0).

~ Figure 2 shows computed contour plots of the potential
V due to a point charge in a voltage-biased tip—base junction,
for both the on-axis and an off-axis case. In both plots:
7,=0.9 (which corresponds to a tip half-angle of 0.45 radi-
ans or 26°); the value of a is chosen so that the radius of the
tip at the apex is 20 A; and the bias voltage of the tip relative
to the base is 5 V.

In conclusion, an exact three-dimensional solution for
the electrostatic potential due to a charge in a voltage-biased
tip/anode junction, modeled in the prolate-spheroidal coordi-
nate system, has been obtained. The results of this study will
be used for characterizing the tunneling current at a tip/anode

Appl. Phys. Lett., Vol. 65, No. 17, 24 October 1994

r

junction using a three-dimensional tunneling analysis, and
will be used to carry out a systematic study of off-axis tun-
peling and its impact on the estimation of active emission
areas in nanosized devices.
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Abstract
Classical field emission theory is based on the one-dimensional planar Fowler-Nordheim
theory which relates current density to the applied constant electric field at the emitter
surface. However, in the actual non-planar, tip-anode geometry the electric field varies
along the microtip surface, giving rise to a spatially dependent current density. Th:s
paper accounts for the electric ficld and the current density variations along a microtip
and derives analytical expressions for tip current and emission area. Calculations for
current density and total tip current are carried out using an exact three-dimensional
electric field solution in prolate spheroidal coordinates in conjunction with the classical
Fowler-Nordheim emission theory. The numerical results provide a physical context for

the often used field enhancement factor P through the use of cxact analytical expressions.




requires an exact threc-dimensional solution for the clectrostatic potential both at the

emitter surface and in the adjoining free space region between emitter and anode.

One approach often taken for adapting the one-dimensional Fowler-Nordheim analysis
to inherently three-dimensional structures, is to model the surface electric field as some
constant times the applied voltage V, ic. F=BV. Here, the parameter B or field
cnhancement factor is often modelled as a function of the tip geometry. For example,
one model for the field enhancement factor is B=1/kr, where r is the microtip radius of
curvature and k is a factor to be empirically determined [2]. P factors are routinely
reported which provide reasonable fits of current/voltage data to the Fowler-Nordheim
equation, assuming F=8V [2,3]. Alternative approaches have also been tried to fit |
Spindt-emitter data using a model which involved two empirically determined factors,
B and y, to relate the clectric field quantity F to the gate and collector voltages,

respectively [4].

Theoretical difficulties for the ficld enhancement factor are known to arise in the context
of extremely sharp tips (r<100 A). For example, the Fowler-Nordheim analysm has
built-in assumptions concerning the electron supply function and induced surface charge,
assumptions which are predicated on a planar, semi-infinite medium emission surface;
for the case of extremely sharp tips cither the radius of curvature or the physical

dimension of the tip may violate such assumptions [S]. An additional conceptual




difficulty with the ficld enhancement approach is that generally the ficld is treated as
a constant over the entire emission surface. Recognizing this, a more recent theoretical
analysis has endeavored to quantify p by modeling the apex of the microtip as a floating

sphere [6].

A principal restriction of the ficld enhancement concept for adapting the Fowler-
Nordheim to three dimensional structures remains; that is, a calculation of tunnel current
cannot be obtained a priori for a given physical system because an empirical estimate
of B is required. Thus, although the P factor provides a convenient scheme for the
comparison of experimental data, it is strictly an empirically determined quantity. What
is desired here is a conceptual framework which permits an estimate of tunnel current, |
in the context of the Fowler-Nordheim analysis, from first principles; that is the

objective addressed in this paper.

The work described in this paper offers a scheme to evaluate the performance of field
emission microtips from first principles, in the context of the Fowler-Nordheim theory,
without the need of an cmpirically determined P factor. This objective has been
achicved by the use of an exact, fully three-dimensional solution for the clectric field
in a microtip/base junction [7]. This geometry models the microtip and anode as
hyperboloid surfaces, and obtains an exact solution for scveral fully, three-dimensional

clectrostatic quantities duc to a free charge in a tip/base junction, in the prolate-




spheroidal coordinate system. To fully appreciate the significance of this model it is
worthwhile to consider Figures 1 & 2. Figure 1 shows: (a) a tip modeled as a constant-
radius structure (such as that idealized in the floating-sphere model), the dotted line, and
(b) the tip modeled as a hyperboloid surface, the solid line. In Figure 2 a transmission
clectron micrograph (TEM) of a fabricated silicon tip is reproduced [8], overlaid by the
two models given in Figure 1. It is self-cvident that the hyperboloid surface offers an
excellent physical approximation for the geometrical features of a field emission
microtip, and such agreement motivated the utilization of the exact prolate spheroidal

solution for the electric field to quantify the emission characteristics of microtips.

The methodology adopted in this paper is as follows. The exact solution for the
electrostatic field of the microtip/base junction given by the prolate spheroidal model
is substituted into the Fowler-Nordheim equation, yiclding an analytic expression that
describes the tunnel current density at every point on the surface. The total tip current
is then obtained by integration of this current density expression over the surface of the
microtip. The current density on the tip surface decays rapidly with the distance from
the tip apex. Using this result, we have been able to develop an estimation schcm; for

the effective emission arca of the tip.




IL Electric Field Derivation

The derivation for the clpcﬁc field on a microtip surface, in a biased tip/base junction
as modeled in a prolate-spheroidal geometry, is given in [7]. The prolate spheroidal
coordinate system shown in Figure 3 is defined by the coordinates &, 0, and ¢ [7] where
¢ € [1,0), 1 € [nym) ¢ € [0,25]). m, corresponds to the hyperboloidal surface of the
tip, 1, is the planar anode surface, lines of constant £ define prolate spheroidal surfaces,
and ¢ is the azimuthal angle of rotation about the symmetry or major axis. Other key
parameters of interest include the foci distance of 2a, the tip-anode distance d, and the
tip half angle 6. Thesc threc parameters are relatcd by the expression 9=co$"(d/a). The

tip radius r on axis is defined as r=a sind tan®.

If a voltage V, is applicd between the tip and anode, the Laplace equation, V?V=0, must

be satisfied. In prolate spheroidal coordinates, the Laplacian is given by:

=___L__ d - d + d ¥} + {3..!13 F.
rucEy ['33((52 1)35) 'aﬁ((l_"z) '5'7) (§2-1) (1-n%) 80’] )

Setting V(n,)=0 at the tip and V(n,)=V, at the anode, the clectrostatic potential is
symmetric in & and ¢ and thus is independent of £ and ¢, so that the solution for V is:




1t
EEEY

The field F(£) at any point on the surface of the tip is determined from the negative
- gradient of V(n). F() is a vector with components in the & and ¢ directions equal to

zero. The resulting magnitude of F(Z) in the n direction is:

-2V,

2 gin(@) M n(l-cos(ﬁ)

l+COB

F()=

(3)

where cos(0) has been substituted for n [9]. Note that 6 is the cone angle of the
microtip, with 6—>7/2 a very flat tip, and 650 an extremely sharp tip. Note also that £
in effect measures the distance on the top surface from the apex, with £=1 the apex

ordinate.




IIL Implications for Field-Enhancement Factor
It is possible to substitute an expression in r, the radius of curvature at the apex, for the
parameter a and put F(Z) in a form that follows the field enhancement concept F=pV,

where B is expressed as B=1/kr.

Py =Y _____2tan() (a)

VET~cos™(8] 1n{ 3729870 )

With F(€) in this form a field enhancement factor defined by k, would be expressed as:

ET<oa= (0] 1-cos (6
—cos®( ln(l*»cos(ai)

-2 tan(0)

k(§) = (s)

Asymptotic analysis may be used to show that k>>1 in the limit of very sharp tip (6—0),
and that kr—d in the limit of very blunt tips (6> /2, £—>1). This means that as the tip
broadens to become a planar surface; the geometry appears as two parallel plates and

the B factor approaches the expected limiting value 1/d.




IV. Tip Current Calculation

The most general form of the Fowler-Nordheim equation is [10]:

jn=

(6)

w2z g2

°3F2 o
snef{ 5

In this expression F is the electric field (V/em), y is the material work function (eV),
h is Planck's constant (erg-sec), ¢ is the electron charge (stat-coul), j is the current

density (amp/cm®), and m is the clectron mass (gm).

The v function is dependent on an involved composition of clliptic integrals and varies
from 1 to O as electric field strength increases [10]. The t* function is a slowly varying
-function of the applied ficld and is approximated as 1.1 [10]. In order to avoid
calculations with the integrals that define v, an approximation that has been made is

[11]):

v(F) =0.95-y(M?3 y(F) =3.79x.10"-g - ()




Using this approximation and substituting the values for ¢ and the constants, the

equation can be expressed in CGS units:

3
j(F):1.511:;:-6;39(4—6.83xf107"[0.95.‘y(n3} (8)

This form of the equation uses electric field values in volt/cm. Converting the field

values to volt/A the equation can be written as:
1(R =artex-] (9)

where the constants A and B are given by:

3
_1.54x10%° 9.811 = E]
asl:34xl exp[ 21 B=0.649% (10)

The Fowler-Nordheim equation developed above provides for the current density ¥(F)
measured in amps/cm’ for the case of a planar geometry and a constant clectric field.
In comparison, the prolate spheroidal electric field F(Z) varies with £, the dimensionless

distance from the apex of the microtip, where the ficld F is greatest.




Unlike the one-dimensional analysis where the ficld is constant both on the surface and
in the adjoining free space, the three-dimensional nature of F(F) yiclds a spatially
variable electric field both on the surface and in the adjoining free space. If we imagine
the tip to be composed of numerous, infinitesimal planar segments of arca did4
distributed in a2 manner similar to the marks on a golf ball, we can apply the Fowler-
Nordheim cquation on cach planar segment and then integrate the resulting j(€) over the
microtip surface to obtain tip current, where &, is the upper limit of & that defines the

effective emission arca; the systematic selection criterion for the &, cutoff value is

described below.
7(E) =aF(E) %xp[-ﬁ},] (11)
1(d, v,8,9) =" [#21072¢7 () 1y (€) 1 (§) Kb (12)

The tip cumrent i is explicitty shown as a function of various parameters, and the
functions h, and h, are prolate spheroidal metrics [9]. Substitution of the various

functions in ¢16) and simplifying lcads to the expression:

dt (13)

¢, exsf £9:2: $) ye=coeT(ey
—Co8
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where the functions x and y arc defined as:

3.5186x1075 exp(?.ﬁl_}.!
x(0,%)= T=c5s (0) ) (14)

¥ 8in(0) ]'n(ucos

y(d,0,¥)=0.3245 d v'gcan(e) m( i:gg:(e) )

Numerical results based on the above method have been selected and the corresponding
curves for electric field, current density, and tip current are plotted in Figures 4-6. It
is significant to notice how quickly the current density is reduced as a function of £, the
distance along the surface from the tip axis. Various sets of calculations have been
done for other values of V, d, and 6, including the limiting gcometries of a very sharp

tip and a tip so blunt that it approximates a flat plane.

In those cases where the value of £ in the region of electron emission remains close to

1, the tip current integral of (13) can be very closcly approximated as:

1(d,v,0,9) =X [exp (¥ Ei-cos(®)|-exp (£ sin(@)]]  (15)
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This equation provides the value of tip current in amperes for a gecometry specified by

d and 6, and for an cffective emission arca defined by the range £=€¢[1,E].

V. Effective Emission Area

Calculations for the tip current indicate that most of the current is duc to the tip arca
that is very close to the tip axis. The numerical results show that 99.9% of the tip
current is from an area where current density has decayed to 3 orders of magnitude
below the current density peak located on axis. This lower limit of 3 orders of
magnitude reduction in current density will be used in a derivation of the cffective

emission area.

The value of & at which the current density is reduced by a factor of 107 is given by:

(€) =50~
1) =103 (16)

The pre-exponential terms for j(€) and j(1), from equation (11), cffectively cancel for
values of £ close to 1, and the exponential terms determine the value of & which
satisfies (16). Performing this operation and solving for £ yields the following

expression:

13




‘°=J

~ This expression defines the proper &, for use in the current equation shown in (15). In

-21.287 V +8in(0) ],<"cc’82 ()] (17)

v’ d tan (@) 1"(%%:7(%;'

the case (b) of the parameters sclected for the figures, the value of &, is 1.0068. With
the substitution of (17) into (15) and simplifying, the equation for tip current can be

expressed as:

i(d,v,

"YV’ (Z sin(e))] (18)

Similarly, (17) can now be used to calculate the effective emission area:

A(d,0, &) =[" [y (8) B () dE (19)

A(d,8, Eo)‘is;(a%)(—e—)toﬁ 7-cos* () -xd?s1n (6) 1n{f, +/¥5—cos?(0))

-x d*tan?(0) + xd?sin(0) 1n[1+s8in(0)]

In the case (b) of the parameters selected for the figures, the effective emission area is

32,706 A

14




VL Comparisons with Experimental Determinations of Beta
The expression for a local B, the field enhancement factor associated with the expression
F(g), is:

B(E) = - T (20)
a 8in(8) yE¥-cos?(D) mf)

The local beta factor is dependent only upon the geometry of the tip defined by the tip
half angle © and the foci distance a, and varies along the surface of the tip with values
of &. Figure 7 exhibits this behavior by displaying the inverse of the beta factor versus
g, for a range of selected on axis tip radii. Note that the value of B* converges to the
parallel-plate value of the tip-anode distance d in the limit as the tip radius approaches

infinity.

The following experimental estimates for an averaged, global tip value for B, as given

by several investigators, are in close agreement with the results shown in Figure 7.

Year Researcher Tip Radius B value Reference

1953 Dyke/Trolan 18 pm 12,800 cm™ [12]
1993 Jenkins ~10nm 636,000 cm®  [13]

1994 Hong et al ~25 nm 210,000 cm®  [14]
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VIL Conclusions

The use of the prolate spheroidal tip/anode model [7] allows for the exact representation
of the bias electric ﬁcla and is used, in conjunction with classical Fowler-Nordheim
theory [1] to calculate surface varying electric field tunnel current densitics, net tip
current, and effective emission arca. Because the prolate spheroidal coordinate system
is such a close geometrical approximation to the tip-to-planc geometry, our microtip

calculations within that system possess an unexpected simplicity.

It has been suspected for years that the B factor is only geometry dependent, and data
has shown it to be of constant value. The exact ficld solution in prolate spheroidal
coordinates largely corroborates those assertions. As derived for a single microtip the '
B factor is solely dependent on geometry; it does not vary with any electrical operating

characteristics.

Close cxamination of Figure 7 reveals that experimentation with microtips of radii 250-
400 A (c.g., Spindt tips) would observe a nearly constant P factor. As researchers find
wayswcmatcnﬁcroﬁpmmyswithanzvcragcofﬁpndﬁappmachingw&ﬂwymzy

begin to observe a non-constant vatue for .

In the derivation of the prolate spheroidal tip current, the exact solution for the electric

ficld F(Z) was substituted into the classic, planar Fowler-Nordheim equation for current

16




density, and we imagined the tip as numerous planar segments of arca d5d4. In reality,
as the electron tunnels from the surface, it does not experience a completely flat surface
as assumed by the Fowler-Nordheim theory. However, the implicit assumption here is

that the surface appears approximately planar as long as the local radius of curvature

for the surface is larger than the tunnel distance of the electron.
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CAPTION PAGE

Figure 1. Comparison of prolate spheroidal and constant radius tip geometries.

Figure 2. Comparison of prolate spheroidal and constant radius tip geometries with a
microtip transmission electron micrograph (TEM) overlay.

Figure 3. Prolate spheroidal coordinate system.

Figure 4. Electric field vs. £ for a prolate spheroidal tip with d=10000 4, a=10025 A,
¢=4.7 eV, and voltages (a) V=100 volts, (b) V=150 volts, (c) V=200 volts.

Figure 5. Current density vs. & for a prolate spheroidal tip. d=10000 A, a=10025 A,
¢=4.7 ¢V, and voltages (a) V=100 volts, (b) V=150 volts, (c) V=200 volts.

Figure 6. Tip current ve. £ for a prolate spheroidal tip. d=10000 A, a=10025 A
$=4.7 ¢V, and voltages (a) V=100 volts, (b) V=150 volts, (c) V=200 volts.

Figure 7. B vs. & for a prolate spheroidal tip with d=10000 A, and selected values

of the on axis tip radius r. (a) r=10 A (b) r=50 A (c) r=200 A and (d)
r=1025 A (¢) r=co.
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Abstract

Process variation inherent in the fabrication of ficld emitter arrays leads to microtip radii
variations which can significantly affect the device characteristics of vacunm field
emitters. This paper treats the tip radius as a random variable and examines the effect
of tip radius variation on current emission within the Fowler-Nordheim theory.. The
dominance ofmcshatpwttipsinanarrayisquanﬁﬁedbynsingcxamplesofmys
with Gaussian and Rayleigh tip radius probability density functions (pdf). It is proposed
dzatﬂ:cRaylcighpdfmaybeagoodmodelforﬂlcr&lﬁpradimvmiaﬁon. Some

expected values for tip current are tabulated for a varicty of statistical parameters.




L Introduction
The successful application of field emitter arrays (FEA) as flat pancl displays and their
potential application in radio frequency (rf) generation and amplification has spurred

interest in the yield-limiting mechanisms and the reliability of these devices.

Ficld emitter arrays must perform their fanction to clectrical specifications, suchv as the
total array current and gating frequency, throughout their intended lifetimes. An
important issue for the utilization of FEAs is the statistical variability in fabrication that
causes the electrical parameters to vary from amtter to emitter [1-4]. These obser-
vations show that all of the cmitters within an array may not function or that a few of
the mﬁnmmprodudngmostofthcobservcdamwhﬂeoﬂmsmmﬁtﬁngata

much lower current level.

InapropeﬂyfabﬁcatcdmayaﬂofmecnﬁnersmcxpectcdwbcﬁﬂIyﬁmcﬁonal.
There are, however, yicld loss mechanisms that limit the total number of fully func-
tional devices. These loss mechanisms typically fall into three categories. The first two
are circuit design problems and random point defects attributed to dust or particulate
fallenonthcdeviceareadm'ingfabric;aﬁon. The third yield loss mechanism is the one

addressed in this paper, namely, the parametric processing variability.




In this paper we examine the cffects of statistical process variability on the emission
current. We treat the tip radius, r, as a random variable with a Normal (Gaussian) or

a Rayleigh pdf. The pdf for the emission current is subsequently derived.

The results presented here clarify previous observations that current emission comes
from only a few tips in an array. More importantly, tip current expected values are
shown for some selected array paramcters based on the generally accepted Fowler-

Nordheim theory for tunneling current.

IL Parametric Process Variability

The fabrication of ficld emission arrays (FEA) is subject to the same process variation
inherent in all integrated circuit processes running under statistical process control.
Processing latitude in photolithography, wet chemi;al or plasma etching, and metal or
dielectric deposition conditions all contribute to the variability of geometric features on
the wafer. These process control variances lead to FEA feature size variability within

marray,fromanzytoarraywiﬂﬁnawafcr,andﬁ'omwdutowzfﬁ.

The highly nonlinear current-voltage (I-V) characteristics of FEA devices, using cither
the classic planar Fowler-Nordheim or the non-planar hyperboloidal tip models [5,6],

magnify the effects of process variations as seen in the measured I-V relationship. One




such example is the dependence of the surface ficld on the tip radius of curvature. The
fabrication process steps, with their respective variances leading to the completed
geometry of the tip radius, will cach contribute variation to the final geometric shape
of the tips. Hence, the variation in tip radii for the final structure is a function of one
or more independent variations due to the individual processing steps.  The
independence of the process variances can be scen from the independence of the steps

themselves.

As an example, consider that a target feature size formed in photoresist depends on the
thickness of the photoresist, the exposure dosage, A.and the development time used to
form the desired image. Once the image is formed and the exposed photoresist is
removed, the image of the desired feature is transferred to the wafer. The final
geometrical feature, however, has not yet been formed. Due to variations in the
photolithographic steps, the image formed across the wafer surface exhibits variation.
The geometrical feature, as an example the gate opening, is then formed by plasma or
wet chemical etching. There already exists a variation in the photoresist pattern due to
photolithographic processes. Supcrimposed on top of that photolithographic variation
is the statistically independent variation due solety to the plasma or wet ctching itscif
which can originate from diffusion cffects in the etchant chemical, or pressure and

power variations in the case of plasma processing.




mestaﬁsﬁcalvuiaﬁmofafcannﬁnanmymtoﬁenbcdetauﬁnedbyopﬁc&
scanning clectron micrpgraph (SEM), or transmission electron micrograph (TEM)
inspections.  These exhaustive in-process inspections carried out during device
fabrication are time consuming and expensive. The most casily acquired statistical data
on arrays is obtained by using computer controlled testing of the I-V rclaﬁonst;i-; for
completed devices. On these devices the overall cffects of the combined process
variations give rise to variations in the measured I-V data. Testing of individual devices
and arrays of devices is performed by computcr controlled parametric testers which

record the data and can display it in statistical form.

When scen from the perspective ofﬂmoompletedandmteddcvicu,mcfo:malk
problem in this case is the relationship between the statistical variation in the measured
I-V data for individually sampled devices and the variation in a critical geometric
feature within the device. The formal analysis developed herc can be extended to

predict a statistical variation necessary to mect a total current specification for a system.

IIL Fowler-Nordheim Theory for Microtips
Relating the electric field at the surface of a sharp tip to the tip radius and to the applied
voltage has received considerable attention. Much of the theoretical work [7] has

adopted the relationship F=pV, where F is the electric field at the emitter surface and




V is the applied voltage. The B factor, either constant or dependent on the radius 1,
is used to account for the particular tip geometry in the otherwise onc dimensional
Fowler-Nordheim analysis [8]. One theoretical analysis [9], undertaken to fit
experimental data based on the Spindt emitter, used a model that involved two
empirically derived factors to relate the electric ficld to the separate gate and collector
voltages. Another effort in modcling [10] indicated that the B factor approach may be
reasonable for tips with a radius that is greater than 100 angstroms, but in the casc of
atomically sharp tips the f factor may be an over-simplification [8]. A more recent
analysis [11] used a floating sphere model (FSM) and derived a formula for the B factor
based on geometrical considerations. Despite the recent discussions regarding the
theoretical necessity for the P factor, it is still widely used as a common basis for

comparison of experimental results.

In the analyses that follow, the focus is on the tip-to-tip radius variation in an array and
how that variation affects both the tip and aggregate array current. For the purposc of
these calculations the B factor will be defined as f(ry=/kr. The k term is a geometric
factor and the r dependence provides a B value that increases with decreasing radius and
yicldsgeatcrﬁcldcnhanccmcntthanaconstamavaluc. The k term will be assumed
to have a constant value. The clectric ficld and radius relationship can now be used in
the Fowler-Nordheim equation to calculate the current density for a tip. In those cases

whmBisdcﬁneddiﬁ'crmﬂyﬁomﬁ(rFl/kr,mccxpﬁcitdcpcndcnccofﬁmthc




geometrical feature size, 1, is incorporated in the expression for the current density j(r).
The derivation of the current probability density function then procwds in the same

manner.

The most general form of the Fowler-Nordheim equation is [12]:

o

el

In this expression F is the electric field (V/cm), ¢ is the material work function (eV),

h is Plank's constant (erg-sec), ¢ is the electron charge (stat-coul), and m is the clectron

mass (gm).

The v function is dependent on an involved composition of clliptic integrals and varies
from 1 to O as clectric ficld strength increases. The t* function is a slowly varying
function of the applicd ficld and is approximated as 1.1 [12]. In order to avoid

calculations with the elliptic integrals, the function v is approximated by [13]:

WF) = 095-(FF m=3.mw“‘§ | @




Using this approximation and substituting the values for t® and the constants, j(F) can

be expressed in amps/cm’ as:

3
%53 743
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This form of the equation uses clectric ficld values in volt/om. Replacing the clectric
ficld in favor of the applied voltage V and transforming to the radius of curvature in

angstroms as the independent variable 1, the current density expression becomes:
A
1=Semp(-B) )

where the constants A and B for a given V are defined as:

4o 154:10%V? 9.811] p-0.649¢%k ®
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IV. Caiculation of Total Current
The Fowler-Nordheim equation developed above provides for the current density i(r) in
amps/cm? for cach individual tip with its particular radius. The current from a microtip

canbcfoundbym\ﬂﬁplyingﬂlccmrcmdensityj(r)bythccﬁ'ecﬁvcenﬁtﬁngmfor




that radius. 'lhctotalcmcntoftheFEAinasunnmﬁonoftipcmmtforanofdn
individual tips. Although the Fowler-Nordheim and non-planar emission theories
express the cmmission current as a current density, the total emission current from an
individual tip or an armray is the parameter of interest. As such, we rewrite the current
density as a tip current using an appropriately chosen expression for the emission area.
There is no general agreement on the calculation of cffective cmitting arca for a
microtip. A recent theoretical study [9] used the model of a spherical tip on the end of
a cone and calculated the arca of emission o, With 2 dependence on the emitter tip half
angle. |

Thcapproachshowninmecalcxﬂaﬁonsﬂxatfoﬂowistoadoptanmﬁssionmafmme'
ﬁpsthatcanbevicwedasbeingdepcndentonthenﬁaofabﬁcaﬁmp:wedmemedw
create the tip. In particular, our cxpcdmcntaﬁononatonﬁcaﬂyshmpsilicon emitters
made use of a technique to isotropically etch silicon while using a silicon dioxide "hat"
as a mask. This technique creates concave sides for the microtip structure, and thwe
sidswouldidcallybcpcrpendiculartoﬂ:eﬁncnpareaatmemoatuppcrpartofme
side wall. lhm,mecnﬁssionmathatisusedinthefonowingdculaﬁomismehalf-

spherical shell surface described by a(r)=2ne?, where 1 is expressed in centimeters.

The tip current in amperes can then be expressed as i(r)=Kr)a(r), which yiclds the

following expression:




ir)=2x10"%A exp(-Br) ©

The radius r is in angstroms. In most geometrical cases the effective emitting area
should scale in proportion to the square of the radius, certainy to a good approximation
if not exactly. Therefore, this simplification in the final expression for i(r) should exist

in most tip geometries.

V. Current Probability Density Function Derivation:

The tip radius can be viewed as a continuous random variable in a given range. This
random variable is described by a probability density function (pdf) over that rahgc.
If an appropriatc tip radius pdf can be determined, then stochastic methods [14] can be
used to analyze field emission parameters in light of the Fowler-Nordheim equation and

non-planar emission theories [5,6].

We considered two arrays of microtips in which the radius is modeled as a continuous
random variable; the first distributed Gaussian fy(r) and the second distributed Raylcigh
hy(r) as shown in Table 1. In all cascs the range of radii valucs is 100-300 A

(angstroms).
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To find the current probability density functions (£) for the Gaussian pdf and hy(i) for
the Rayleigh pdf) describing current for a single tip, the root (r,) for the radius r and the

derivative of the current must be found [15] from equation (6):

lll[z::zo Wxd M
%(rp-zxzo"‘w exp(-Br) ®
A L

el =

The corresponding current probability density functions arc shown in Table 1. These
functions are plotted in Figure 1. The total probability arca under each of the curves
has been calculated and shown to be unity. Since the abscissa current values ane m
amperes and cover a range of only about 0.001 ampere, the plotted ordinate values:can
be exceedingly large. In the continuous random variable case thcpointprobabiliﬁé at
aparﬁcularcmrcm“luehzvenomcaning;onlyinarmgeofcmrcntvaluucana
determination of probability be made. The expected values for tip current were

computed and arc also shown in Figure 1.
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Using a similar procedure for finding functions of a random variable, the current
probability density functions describing the total current from an array are derived. The
resultant total current probability density functions mirror the tip current probability
density functions with the substitution of the total array current variable for the tip
current variable. The expected values for the total array current arc those for the tip

current multiplied by the number of tips in the array.

Choosing between probability density functions for modelling the array current
performance is important. Since the actual distribution is difficult and expensive to
obtain, it often remains unknown. However, some insight from experimentation may

be used to identify a likely pdf for a given fabrication process.

We propose the usc of the Rayleigh distribution to represent the tip radius varation.
Consider that etch rates also vary as a function of crystal plane or lattice direction. For
example, in a simple cubic lattice the directions X, y, and z could experience d:ﬂ'etent
ctch rates. Ifthwcpmﬁcularooordinamatheﬁpsurfwcmconsiddemsian
distributed random variables duc to ctching variations along their respective directions,

then the random variable representing the radius would be:

R={X2:Y3+Z3 ()
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With this definition, the random variable R would be Rayleigh distributed [16]. The
smcappmachcanbegenmliudtoincludemymnnberoflatﬁcedimﬁom (ie., for

the diamond lattice) and the resulting tip radius pdf would still be shown to be Rayleigh.

The Rayleigh distribution is shown plotted against the Gaussian distribution in Figure
2, Tthayldghparamcmhavebeensettoaﬁgnclosetywiﬁ:meGanssim
distribution so that a comparison of current calculations can be made. The conjecture
presented here is that while the Gaussian tip radius pdf is of interest, the Rayleigh pdf
is probably a more realistic choice in modelling the field emission current from an array.
In a fabrication process, the photolithography and etching steps are designed to achieve
a targeted tip radius value. Asmeptoceu(i.e.,wctcxplasmactching)iscarﬁed out‘
to achicve the limits ofitscgpabi]ily(i.e.,sharpnus),thepromsvaﬁaﬁonwmbe
exhibited in the process paramcter that represents degradation from its limits (ic,
decrcased tip sharpness). The resultant tip radius pdf would exhibit a cutoff at the small

radiicndofthcpdfraﬂlcrﬂmnthetaﬂthatchmcteﬁm the Gaussian distribution.

VIL Summary of Results
The variation in tip radius inherent in the fabrication of a field emission amray is a result
of the statistical nature of the fabrication process. The resultant I-V characteristic is

strongly dependent on the sharpest tips in the array. To quantify the performance of the

13




array, the tip radius is viewed as a random variable and stochastic concepts are applied.
In the case of a Gaussian distributed tip radius, the array current has a lognormal

distribution.

It can be observed that the tips with a small radius have a dominating effect relative to
the larger radius tips. For the Gaussian array, the tips with radii between 100-150 A
connibufe about 1% of the current because there are so few tips in that range for the
chosen standard deviation of 15 A; the tips 150-200 A contribute 85%, the tips 200-250

A contribute 14%, and the tips 250-300 A contribute 2 negligible current percentage.

Ithasbecnpmposedthat,atleastmsomccasa,thcvaﬁaﬁanofmeﬁpradimmxybe
more closely modeled by a Rayleigh distribution rather than a Gaussian distribution.
The Rayleighﬁpradiuspdfcxmnplemmlsinmaﬂaycmﬂ:atisabmnGOpcrccnt
of the current calculated from a similar array with a Gaussian distributed tip radius.
Additional calculations of expected tip current for various parameters are listed in 'I‘Qbic
2. The particular Rayleigh pdf parameters listed to the right of the Gaussian parameters
have been determined to match the two distribution functions as shown in Figure 2.
Comparison of the horizontal pairs of expected tip currents indicates that the Rayleigh
expected current falls below the Gaussian expected current, and to a greater degree as

the distribution spread or standard deviation is increased.
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The tabulated values of expected current are plotted in Figure 3 to highlight the ratio
of the standard deviation to the mean. The Rayleigh curves arc consistently below their
respective, paired Gaussian curves. The upward trending of the Gaussian curve (3) in
Figure 3 is reflective of the fact that the pdf functions with the ratio o/p=0.1 have their
Gaussian tails substantially within the limits of tip radii used to add up current
contributions. The incrcased standard deviations of the other Gaussian curves
designated as (b) and (c) (i.c, o/t=0.2, o/u=0.3) resulted in a substantial portion of the
ApdfGaussiantailsfallingomidethelinﬁtspftipradiiusedtoaddupctmnt

contributions.

V'Ehepracﬁcalmﬁa‘ofexmniningthenﬁaoﬁpsofmmaybysampﬁngmdemmined
whether the tip radius is distributed either Gaussian or Rayleigh is indeed difficult. As
shown in Figure 2, such a task is a determination of whether the Gaussian tail is present
or not. An alternative for making such a pdf determination is to sample the microtips
forﬂxepmposeofdcterminingamcanvalueradima’ndastzndarddeviaﬁon. ’l'lns
statistical information can then be used to model the microtip array as demonstrated
hercin, and the modeled current can be compared with actual current in making a final

determination of the tip radius pdf.

Itishnpmtammnotelhatﬁleabovemalysissuggmﬂmitmaybediﬁaﬂtm

accurately predict the performance of an array-type emission device, based on the

15




measured emission characteristics of a single tip. We have shown that the total current
of such a device depends in a nonlinear fashion on the statistical variation of the tip
radii which will inevitably occur in a fabrication process, and it is accentuated by using
micron-sized procedures to form nanometer-sized structures. Hoﬁvcva', the understanding
and quantification of the statistical effects associated with tip radius variation can assist

in developing a device testing strategy to support a fabrication specification.
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CAPTION PAGE

Figure 1. Tip current probability densi functions for Gaussian and Rayleigh
distributions of tip radii between 100-300 A, with V=150 volts, k=1.6, and $¢=4.7 ¢V..
(a-Gaussian, b-Rayleigh). Calculated expected values: Gaussian 2.16 pA and Rayleigh
1.36 pA. '

Figure 2. ComparisonofaGaussianpdftoaRzyl' pdf for the tip radii range 100-
300 A. The Gaussian parameters are mean p=200 and standard deviation o=15 A.
The Rayleigh parameters arc v=175 A and A=23 A (solid-Gaussian, dashed-Rayleigh).

Figure 3. Expected tip current vs. tip radius for various o/p ratios. (a-Gaussian with
o/p=0.1, b-Gaussian with o/p=0.2, c-Gaussian with o/p=0.3, d-Rayleigh similar to curve
a, e-Rayleigh similar to curve b, f-Rayleigh similar to curve c).

Table 1. Comparison of tip current probability density functions based on Gaussian and
Rayleigh tip radius probability density functions. ® is the Heaviside unit step function
in the Rayleigh pdf. »

Table 2. Tip Current Expected Value Examples.
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l. INTRODUCTION

Experiments on frequency mixing [1-3] and tunneling time measurements [4-6]
have stirred renewed interest in the problem of tunneling through time dependent barriers
in a vacuum diode configuration such as the STM junction. When the laser field interacts
with the STM, the tip and base act as an antenna system for detection, harmonic
generation and mixing [7]. The resulting nonlinear I-V characteristics of the STM diode
produce both a rectified DC and AC tunneling voltage bias [7]. Earlier, the metal-oxide-
metal point-contact diode with the same configuration was used to determihe absolute
frequencies up to the visible (~10' Hz) and as a consequence of these precise
measurements, the speed of light is redefined as an exact Sl constant of 299792458 m/s
[8]. Lucas et al. [9] and Krieger and co-workers [1-3] have claimed that the STM
configuration is superior to the point-contact diode because of its controllable gap width
and electron transport in vacuum. This latter is easier to treat theoretically than transport
through an oxide layer. However, at present the frequency response of the STM junction
has only been measured to a few tens of gigahertz (~10" Hz). There are few theoretical
treatments of electron transport through oscillating barriers [10-14]. Here we describe
briefly the formulation of a theory and present calculations of the inelastic photo-assisted
tunneling through a planar junction with both a static DC voltage and a AC voltage of
angular frequency . One purpose of this paper is to ultimately explain the experimental
data of Nguyen et al.[4] for the determination of the tunneling time in a laser irradiated
STM junction.

in 1987 Cutler et al. [15] proposed an experiment to estimate the time of transit of
an electron tunneling through a quantum mechanical barrier by measuring the DC current
as a function of gap spacing (for a fixed laser frequency) or as a function of frequency
(for a fixed gap spacing) in an irradiated STM junction. If a linearly polarized laser beam
is focused on the STM junction with the shank of the tip assumed to be many
wavelengths longer than the radiation, then the tip acts as an antenna to couple the
radiation and the junction. The current at the laser frequency will be propagated with
small attenuation over an appreciable length and establish a time dependent oscillating
potential between the tip and base. Because of the geometric asymmetry of the junction,




a DC component is generated of the form

= v d
laa=l+ —_— 1
oc o .f\—‘: 2"(2n)! AV M

where the second term arises from the non-linearity of the junction [4]. To estimate the
tunneling time they assume a simple pseudo-kinetic description of ballistic transport, for
the case of fixed gap distance at a constant frequency. If the junction is irradiated by a
laser of a fixed frequency where the polarization is parallel to the axis of the tip, the
electron transfer process is enhanced during half of the period when the electric field
vector of the laser beam is accelerating. During the second half of the period when the
laser field is reversed, the barrier will increase and transport will be diminished [4,9]. [
the gap width is greater than some critical value s, the electron will not have "enough
time" to traverse the barrier and be detected before the field is reversed. The tunneling
time can be deduced from [4,16] *

L (2)
v

where it is found that vav,, the Fermi velocity of the electrons in the metallic electrodes
[4,16]. The argument for estimating the tunneling time is similar for the case of a fixed
gap spacing with a variable frequency. [f the frequency changes too rapidly then the
electron will not have "enough time" to traverse the barrier before the field reverses
direction. .

In 1989, Nguyen et al. [4] used the dynamical response of an STM to measure an
operational tunneling time. In this method, a natural time scale is provided by the
frequency of the laser that constitutes an integral part of the measuring apparatus. The
laser causes the tunneling and at the same time determines the "speed” of the tunneling
process. In this experiment, a linearly polarized Nd-YAG laser of wavelength 1=1.06um
was focused on an STM junction consisting of a W-tip (of radius of curvature ~2nm and
a Si base in UHV (~10"%orr). The experiment was performed with no applied DC bias.
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The rectified current was measured from tip to sample. From their results, using Eq. (2),
they deduced a tunneling time of about 1.8 fs. This is in agreement with the theoretical
estimates of Hartman [17], Buttiker et al. [11] and Huang et al. [16]. A somewhat
different version of this experiment by Moller et al. [18] yielded similar results but the
interpretation of the tunneling time is still in question. Other attempts have been made to
measure the “traversal time" [5,6]. Most related is the experiment of Gueret et al.[5] who
indirectly measured the traversal time in a heterostructure tunneling barrier using the
orbital analog of a Larmor spin precessional clock. Their value of T for a barrier of 40-50
nm in width scales with the results of Nguyen et al. for a barrier of 1-2 nm [4].

In this paper we first describe briefly the formulation of a theory of the inelastic
mediated photo-assisted tunneling for a planar bimetallic junction with both a static DC
voltage and a time dependent bias of angular frequency ». A more detailed derivation
and analysis will be published elsewhere [14]. We then present resuilts for a trapezoidal
barrier surmounted by an oscillating potential of the same frequency range as used in the
tunneling time experiments [4].

In Section Il an expression for the current is derived using a kinetic formulation of
the transfer hamiltonian method. Although the current is initially calculated within the free
electron model, the kinetic formulation allows for the inclusion of band structure effects
through the density of states factors. In section lll the formalism is applied to a model
planar MVM diode with a trapezoidal barrier (due to an external static field) surmounted
by a time dependent oscillating potential. Although the wave function can be calculated
exactly to infinite order, we have initially calculated the current to first order in order to
focus on the role of single photon mediated inelastic tunneling. The transition probability
is calculated using time dependent perturbation theory. The photo-assisted inelastic
tunneling current was obtained as a function of frequency, fields, barrier parameters and
material asymmetry. The results presented in Section IV indicate that for the tunneling
biases used in STM experiments, the contribution of inelastic mediated photo-assisted
tunneling rises rapidly for frequencies >10'® Hz (i.e., visible). The results are applied to
an analysis of the tunneling time experiments of Nguyen et al. [4). The conclusions
suggest some constraints but do not invalidate the experimental procedure used for
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extracting tunneling times in an irradiated tunneling junction. This is discussed in Section
V.

Il. TUNNELING CURRENT FORMALISM
The tunneling current is calculated using a kinetic formulation of the transfer
hamiltonian method. Time dependent perturbation theory is used to determine the
perturbed barrier wave functions. The harmonic perturbation is of the form,

V(t) =éV“c05mt, )

where V_, is the amplitude of the applied oscillating field and o is the angular frequency.

The inelastic (and elastic) tunneling enhancement due to this perturbation is viewed
as a transition from an electron energy state E,, (electrode to the left of the barrier) to an
energy state E, =E, +mhw (electrode to the right of the barrier), where m is an integer.
For weak coupling of the two electrodes, the wave function inside the barrier region can
be written as,

i o
P(rt)=a 0 (e * +Y b (1O Me * (4)

where a(t) and b(t) are time dependent coefficients. The functions ®(r) and ®,,(r) are
the spatial solutions of the unperturbed left and right hamiltonians H, and H,, respectively:
These barrier wave functions have decaying exponential like tails in the barrier region
whose overlap is responsible for the tunneling.

Using time dependent perturbation theory and the initial conditions a(0)=1 and
b(0)=0, we obtain to first order [19],

1
b,‘,‘,’(t)--%l <0 [V(t") |0, >t (5)

Here w_,=(E,-E )/ The transition rate from the initial state (j) to the final state (f) is




Re=1X [b, ()1 0

We assume that the final states are dense enough so that the total transition probability
in Eq.(6) can be expressed in terms of an integration. If the parallel component of the
energy is conserved during tunneling, the transition rate from state E, to E, can be written

R~ [ OB p(E) (60 21 -(E)), v

where the x-direction is the normal direction and the Fermi factor has been introduced
to account for occupancy of the final state. Since the transmitted probability current is
equal to the tunneling rate R,, the transmission coefficient or tunneling probability is

R
Dk=_. 8
R (8)

where R, is the probability current incident on the barrier. For a free electron model and
box normalization,

a;,=3‘r§|a,,;z, ©)

where the coefficient of the incident plane wave is a,,.

The tunneling current within the kinetic formulation is the product of the arrival rate,
density of initial states, occupation factor for initial state and tunneling probability
integrated over all initial states, E,

Jy= f p(E)v(E)HE)DJE, (10)
where v is the arrival rate of electrons on the barrier and p(E,E ) is the density of states
for incident electrons having energy between E, and E;+dE, and normal energy between

E, and E +dE,.




Within the free electron approximation the transmission coefficient is [20]

| sinfw’y2 sin‘w t/2
Dy e .l 1)1 €M =+ ———scross terms| (11)
where o, =(E-EFho)M=E_/h and
IM,[?=[ <0 JeV  |®>|? (12)

for a harmonic perturbation. In the limit of long time.

. sin?(E t/2n)

" <2mS(E 13
et (E, U202 ) )

The delta function limit yields the result that the most probable transitions involve the
exchange of a single photon. The short time limit is proportional to t indicating that the
tunneling current initially increases with time [19].

I1l. TUNNELING CURRENT FOR A TRAPEZOIDAL BARRIER IN FE APPROXIMATION
In this section we calculate the current for the case of a trapezoidal barrier within

the free electron approximation. The hamiltonian for the left electrode is

H,=-2"'_52v2+[vo-Fx]e(x-s), | (14)

and the left electrode hamiltonian is

H,=-_21mz-ve+[vo-Fx]9(s-x)+[C,—C,-eV“]9(x-s). (15)

Here ©(x) is the step function, F is the applied static electric field, {,, are the Fermi
energies of the left and right electrodes, and ’s’ is the barrier gap width. The zero of
energy is taken to be the bottom of the left hand electrode. The solutions for the
unperturbed hamiltonians are




(1) =A"Re ™"y, , (¥), (16)

where A is the normalized area of the planar contact and k; is the transverse component
of the wave vector. The solutions for yx,, are given by a linear combination of plane
waves in the electrodes and by Airy functions of the first and second kind in the barrier
region [20,21]. Using boundary matching at the two interfaces, x can be determined
exactly in each region [20,21].

The total tunneling current is [20],

_2ent( 1
11 Sa—
° h \laﬂlz

c j-evdEnId&didE‘f‘(El)h —H(E,-E+E +6V )]
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The subscript 1 refers to the left hand electrode, 2 to the barrier region, and 3 refers to
the right hand electrode.

IV. RESULTS

To determine the frequency response of a model W-Au junction we calculated the
tunneling current using Eq.(17). In Fig. 1 we exhibit the results of the tunneling current
as a function of angular frequency with a static field F,=1.5x10%/m and an oscillating
field of magnitude F_,=5x1 0%/m. Calculations were done for two different gap widths,
'~ §=0.8nm and s=1.0nm. For »<5x10"%rad/s, the current dentsity is independent of
frequency; for @ =10"%rad/s, there is a rapid increase in the current density, i.e., about a
tenfold increase in J as » goes from 10'° to 3x10'*rad/s. This behavior is exhibited for
both gap widths and other model calculations by the authors give the same systematics
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for different values of the static field. The calculated results are in good qualitative
agreement with the analysis of Buttiker and Landauer [11] who calculated the
transmission coefficient for time dependent tunneling in an oscillating barrier
superimposed on a one-dimensional rectangular barrier. Their calculated transmission
coefficient for the first two side bands also indicates that at low frequency the probability
of tunneling is independent of frequency. However, at higher frequencies, the
transmission probability increases rapidly. This is consistent with the results in Fig. 1.
This occurs because a particle which absorbs a quantum »w and has energy E+how
tunnels through the barrier more easily than particles with energy E or E-hw. For angular
frequencies sufficiently greater than ~5x10' rad/s, electrons can gain enough energy so
that pure photoemission occurs.

We have also examined the dependence of the tunneling current density on the
gap spacing with V, and V_ as parameters. In Fig. 2 we exhibit the resuits for
©=1.8x10"5rad/s (approximately the value for the Nd YAG laser) and for a low frequency
w=5x10"*rad/s. Both the static and oscillating field are 10mV, values typical to some STM
experiments. For a constant V,, the tunneling current density falls off approximately
exponentially as s increases, which mimics elastic tunneling.

Using Eq.(17) we calculated J as a function of 's’ at two different frequencies but
with a constant F,=1.5x10%V/m and two values of F ,=1.5x10%v/m and F_=5x10". The
results are plotted in Fig.3. The curves exhibit similar behavior with a maximum and rapid
fall-off with gap distance. This resuits from ohmic transport for small gap spacings and
then conventional tunneling as the gap distance increases. The curves exhibited in this
figure are almost identical qualitatively to the low frequency results of Levy Yeyati and
Flores [13]. Calculations show that the peak position and fall-off is relatively insensitive
to frequency even up to frequencies near the visible. The curves exhibit a cut-off in the
rectified current as a function of gap width for a fixed o and F_, as was predicted by
Cutler et al. [15]. However, the cutoff does not have the expected dependence on
frequency. One of the reasons may be that only a field F_,>F, can reverse the direction
of the electron’s motion and lead to the expected decrease in Jy.. In these first
calculations the static field is always equal to or greater than F,. In addition, even the
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small work function differences of the W-Au junction (~0.2-0.3eV) correspond to effective
fields of about 2-3x10%/m for a gap width of 1 nm. Hence, the static field always

dominates.

CONCLUSIONS

In the present work we have formulated a theory of inelastically mediated photo-
assisted emission for a planar bimetallic junction with both a static dc voltage and a time
dependent bias. An expression for the current is derived using kinetic theory and the
transfer hamiltonian method. The wave functions are determined from time dependent
perturbation theory and are calculated recursively to infinite order. The photo-assisted
inelastic tunneling current was calculated as a function of frequency, fields, barrier
parameters and material asymmetry.

Some important conclusions emerge from these calculations which impose
limitations on but do not invalidate the experimental procedure to determine a tunneling
time using a laser irradiated STM junction. To make the experiment feasible it is
necessary that the rectified DC current must reach a maximum and then decrease as a
function of frequency for fixed gap spacing or as a function of gap spacing for a fixed
frequency. In the first method, having chosen some appropriate gap spacing, the critical
frequency at which I, decreases to some negligible value must be such that the
electron’s "motion® can be reversed by the oscillating field before it is detected at the
anode. This requires that the effective static field, consisting of the applied static bias
and/or the field due to the contact potential difference is less than the amplitude of the
laser induced oscillating field. In the alternative procedure, the limitations are less
stringent and only the condition that F, (V,)) <F(V,,) needs to be satisfied. A careful and
systematic study will have to be done before definitive criteria can be established to
define the exact limitations on the experimental procedure.
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LIST OF FIGURES

Figure 1 The tunneling current density as a function of angular frequency for gap
widths s=1nm (solid line) and s=0.8nm (dotted line). The average static field is
1.5x10%/m and the amplitude of the oscillating field is 5x10°V/m.

Figure 2 The tunneling current density as a function of gap width with angular
frequency as a parameter. The dotted line indicates the values for w=1.8x10"*rad/s and
the solid line is for w=5x10"*rad/s. The external bias voltage is 10 mV and the amplitude
of the oscillating field is 10%V/m.

Figure 3 The tunneling current density as a function of gap width with amplitude and
angular frequency as parameters. The average static field is 1.5x10%/m. The applied
fields F ,=1.5x10*V/m (—) and F,,=5x1 0’V/m for ©=1.8x10"%rad/s (~—). Also shown
is the curve for the applied oscillating field F,=1.5x10%/m(-*-*-) with frequency 1.8x10""
rad/s. The curve {--) is a normalized version of the curve for (-*-*-).
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Appendix E




100 by 100 pixels can take several minutes to display as a three dimensional plot
on a typical microcomputer. The same plot takes 30 seconds on this system.
If twenty images are recorded in a single day, each one being say, 500 by 500
pixels, displaying that data on a simple microcomputer would require throwing
away every other pixel and it would still take hours to review a days worth of
data.

The last function of the computer is control of the STM scan. This requires
a special output device to send the correct electronic signals to the electronics
controlling the STM. There are a number of possible ways to do this. There is
an instrument bus, IEEE 488, or direct digital I/O, or an analog control signal
generated with a digital to analog converter. Each method has advantages and
disadvantages. The D/A method was chosen as a quick and dirty approach.
It’s cheap, and can interface to simple analog circuitry controlling the STM. It’s
disadvantage is noise. At some point in the future, a better but more expensive
option may be used in it’s place.

The requirements for speed and accuracy are roughly the same as those for
the A/D converter used to collect data. Now let’s outline the actual system
built to meet these functions.

3 Meeting the Requirements
3.1 The Outline

This section will explain how the above requirements were met. The overall
computer system for the STM is shown in figure 1. This paper will give the
details of the hardware shown in figure 1.

3.2 The Chassis

The PC tower was chosen as the basis for this system. The reasons were expan-
sion capacity, availability of boards, and cost. While the PC bus is one of the
slower ones available, CPU speeds and video speeds have increased enough in
the last couple of years, to allow the PC to be the basis of our system. Only a
couple of years ago, STM would have required a much more expensive bus such
as VME. The tower case was needed to allow enough cards to be installed (6
expansion cards) and to supply enough power.

3.3 The CPU

The central processor unit (CPU) card is critical. In order to meet the speed
requirement outlined above, the CPU had to be fast and able to address large
amounts of memory. High speed floating point was also required. The CPU
card chosen has an Intel 486DX CPU, running at 66 MHz. This is an minimum.
A 100 MHz Pentium would be better.




3.4 Extra Memory

Experience had already shown that 4 megabyte of memory is not enough. In
order to be able to handle low resolution images 8 megabyte is just enough. So
8 megabyte of extra memory has been installed. The total RAM in the system
is now 20 megabutes. Xwindows is the largest user of RAM. If the system were
used without Xwindows, a system with 8 megabytes of RAM would do.

3.5 Disk and Tape

There are four disk drives connected to this system. Two hard disk with a
capacity of over 700 megabytes and a two floppy drives, one 5 inch and one 3
inch drive. The speed of disk access is important when large volumes of data
must be reviewed or processed. The current system uses an IDE interface. The
system could be improved with SCSI disk. The floppy drive is used to make
backup copies of data once it is no longer needed on-line. A tape drive which
connects through the floppy controller is used for major system backups.

The capacity of the hard disk will be a problem if high resolution data taking
begins. A 100 by 100 pixel image only requires 20000 bytes of storage. A single
image of 500 by 500 pixels requires 1/2 megabyte to store. That is one floppy
disk per image. While the current system can just get by, a larger hard disk and
a SCSI tape backup would be a good idea. These can be added to the current
system.

The base system, chassis, mother board, disks and tape drive are all rather
generic parts.

3.6 Video card

The graphics requirements are currently being met by a Diamond “Viper” SV-
GA graphics card, and a 14 inch color multiscan monitor. Both of these devices
have a resolution of 512 pixels. The graphics board has it’s own memory and
processing firmware. The video card was a mistake. Diamond has a closed
architecture and hence is not supported by second source software. It should
be replaced with a better card such as the ATI “Wonder” card. The monitor
should also be upgraded to at least a 17 inch monitor to take full advantage
the Xwindows environment. If the mother board is upgraded, a PCI bus with
ATI video card is recommended for best results using Xwindows. The graph-
ics firmware supports at least 256 colors or 256 grey levels, this is important
for image display. It also requires an analog RGB signal to work at such high
resolution. It takes a special monitor to use these signals.

3.7 Analog and Digital

There are both an analog to digital and digital to analog boards in this system.
Both of these boards were supplied by Computer Boards Inc. {?]. The analog




to digital board is a 12 bit, 50 KHz device. The D/A board is 100 KHz and
resolution 16 bits.

The A/D board is used to record tunneling current. The D/A board controls
the STM scans by suppling analog X, Y and Z signals to a high voltage amplifier
which drives the piezoelectric tube. Also the D/A board supplies the bias voltage
to the tip.

These boards are just fast enough to support a 256 pixel image scan. To
push to higher resolution imaging, A/D board will need be replaced at some
point in the future with a 16 bit, 100 kHz board. The 12 bit resolution of the
A/D board is a problem. Twelve bits gives a resolution of 1 part in 4096. But
that assumes you make use of the total range of the board. In practice, this
is not the case. If the board has a 10 volt range, and the signals from a given
experiment only span 1 volt, then the effective resolution of such a board is only
1 part in 400. This is still ok for pictures, but it can add unwanted noise to the
signal if statistical analysis is to be performed on the data.

3.8 The Outside World

The current system has two serial lines running to the outside world. One line
is connected serial mouse and is used as input for Xwindows. The second line is
connected to a standard ASCI terminal and can be used to log into the system
to do background task.

There is also a standard ethernet card connecting the system to hypespace.
The system allows remote users to log in from anywhere on the internet. It also
supports remote Xterminals.

3.9 The Software

Of course the real work in getting all this hardware to function together as a
system is in the software. 0S9000/PC was the operating system of choice. It
is small, fast, powerful and relatively bug free. It supports C, FORTRAN and
486 assembly as the programming languages. It is similar to the UNIX system
but is much more compact. It also supports real time operation, which is a real
plus in a laboratory environment.

After the operating system, the next level of software is the system of hard-
ware drivers. Each of these programs is required to interface the operating
system and applications programs to specific devices in a standardized way. S-
ince this computer system was put together with parts from several different
vendors, some of the device drivers (D/A and A/D) had to be developed here.
Software to support the serial lines, ethernet and Xwindows were all supplied
by Mlcroware.

The next level of the software is applications program libraries. There are li-
braries to support devices such as the graphics processor and mouse, Xwindows.
Internet support libraries are supplied by Microware.




Finally, there is the applications software. These programs include various
utilities, image processing and display, data acquisition and STM control.

The serial links to the outside world have been functioning for some time
and work well. Ethernet access includes telnet and FTP. The graphics system
is functioning and emulates a black and with Xterminal. Both the Xserver and
the video card must be upgraded to display color images on the system monitor.
Currently, images are displayed on a remote HP Xwindow workstation. There is
still a lot of work to do at the applications level to develop better displays. De-
vice drivers for the A/D and D/A boards have been developed. Data acquisition
and STM control programs have been written and improvements continue.

All of this software must fit into some sort of unified whole. The goal is
to acquire and analyze STM data. Since higher resolution imaging is the main
thrust of this effort, speed and efficiency of both hardware and software are
very critical. This requires that the software effort be well organized and the
programs must be well written. '
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Figure 1: Schematic of Computer System for STM
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Figure

A scan of a planar gold surface taken immediately after
forming a 17 X 44 Angstrom pit.
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ABSTRACT

The spatial and temporal temperature distribution for a conical shape metal
emitter under laser irradiance is obtained analytically using the Green function method.
In this study the tip is modeled as an infinite cone of half angle 8,which can vary

between O and %/2. The full three dimensional heat diffusion equation is solved
simultaneously with the Fourier equation for the heat flux assuming no radiation losses.
The general solution is obtained for an arbitrary temporal and spatial distribution of the
irradiance. With uniform irradiance the temperature rise in the conical tip varies almost
linearly with the laser intensity and heating time and depends strongly on cone angle
and thermal properties. For a tungsten tip, the temperature increase is about 2-3 orders
of magnitude above ambient for a typical laser intensity of about 1MW/cm? in a time
of a few hundred nanoseconds. To study Joule heating and the Thomson thermoelectric
effect in the STM junction we first obtained the current distribution inside the emitter.
Using this as a volume heat source, we used the Green function method to solve the
beat conduction equation. The resulting temperature gradient was then used to obtain
the thermoelectric potential. For a tungsten tip at ~ 1000 ° K, the thermoclectric effect
generates a bias voltage on the order of 10 mV.




1. INTRODUCTION

Recent experiments on laser frequency mixing [1-3] and tunneling time
measurments{4] have prompted interest in thermal effects due to laser irradiation of
an STM junction. When the laser field interacts with an STM, the tip and base act as an
antenna system for detection, harmonic generation and mixing [5]. The resulting
nonlinear I-V characteristics of the STM diode junction produce both a rectified dc
and ac tunneling voltage bias. In addition, the thermoelectric effects may also contribute
to the bias potentials in the junction. To investigate these latter effects it is necessary to
determine the laser induced temperature distribution in the junction. The resulting
temperature gradient inside the emitter as well as the rectified dc current through
the STM junction can produce both resistive (Joule) heating [6] and a Thomson
thermoelectric effect due to the absorption or evolution of beat. Thus the STM junction
can be heated or cooled by the reversible Thomson heat depending on the direction of
tunneling current flow. These heating or cooling effects modify the temperature
distribution inside the emitter and anode with the result that a thermoelectric potential
can be generated by a temperature gradient between the tip and base. These heating
effects also produce thermal expansion [7] so the tunneling gap width will be modulated
influencing the tunneling current. To find the temperature distribution inside the tip
(and anode for 8=n/2) due to Joule and Thomson heat we solved the Laplace and
continuity equations to obtain the current distribution. To avoid mathematical
singularities and replicate the current distribution for a realistic tip, the infinite cone
model is truncated at some appropriate distance from the apex. The temperature
distribution is then obtained by solving the heat conduction equation using the Green
function method with surface and volume generation of heat. Knowing the temperature
gradient, the laser induced thermoelectric potential in the STM junction is calculated.

In section II, we outline the calculation for the temperature distribution in an infinite
and truncated conical emitter using the Green function. The solution for surface and
volume generation of heat by laser irradiation and by resistive and/or Thomson heat
respectively are also given in this section . The thermoelectric voltage generated by heat

2-



and current sources is presented in section Il and numerical result and discussion is
given in section IV,

II. THE CALCULATION OF THE TEMPERATURE DISTRIBUTION

In our analysis we assume that the emitter tip is an infinite metallic cone of angle 6,

which can varies 0 to x/2 [sec fig.1]. The emitter is immersed in a uniform azimuthally
symmetric laser beam incident normally on the cone surface. We here only briefly
summarize the details of the calculation of the temperature distribution with surface and
volume sources of heat. A detailed description of this analysis is to be published
clsewhere.

To obtain the temperature distribution T(r,t), we solve the inhomogeneous heat
conduction equation

1T@t) F@,»
VzT(r.t)-‘k- % - K

@

where r and t are spatial and time coordinates, k is the thermal diffusivity, K is the
thermal conductivity (k and K are assumed as constant) and F(r,t) is the rate of heat
supplied per unit volume per unit time,

We use the Green function method to obtain a general solution of eq. (1).

The procedure is ;

1. Solve for the Green function G(r,t,r’,t") for a point source with Neumann boundary

conditions
ne V G(r,t.r,t) =0 2

where prime denotes the source, and n is an outward pointing normal to the surface.
The Green function satisfies
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It is assumed that both volume and surface generation are possible.

2. Apply Green's theorem and the principle of superposition to obtain the solution for
an arbitrary source distribution.

For volume ‘and surface generation the resulting temperature distribution is given by [8)

l", ! r’l
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The boundary condition to be satisfied for surface generation is
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where, in our case, Q(r’,t") is the heat produced per unit time per unit area due to laser
irradiation at the surface.

It is assumed that in general the laser intensity has Gaussian spatial and temporal
distribution:

Q.)=Qo(1-RO)) exp(<(r'/ DY) exp(«(t/Tp)D) ©

where Q, is the maximum intensity of the laser beam, R()) is the reflectivity and Tp, D

are temporal and spatial pulse widths. The reflectivity is a function of the wavelength A.
We first consider the emitter to be modelded as an infinite cone. Subsequently

we will concern ourselves only with the temperature distribution near the apex of

the emitter. It can be shown that the Green function for this case is [9]:
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In+1/2 (x) is the modified Bessel function and Pp(J4) is the Legendre function.
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The summation over n is for succesive roots of = 0 greater than -1/2.

H=itg
For the finite (i.e., truncated) cone case [fig.2], we assume, as in the infinite cone
case, a uniform azimuthally symmetric laser irradiation is incident on the cone surface.
The cone length is assumed large enough compared to the real emitter radius so that
the upper part of cone (at radius r=d in fig.2) is kept at a constant temperature by a heat

reservoir. The result is
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where JMm(x) is a Bessel function and the summation over m is for roots of

exp(-Yo k(1)) ®)
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I1.1. SURFACE GENERATION OF HEAT

For a uniform spatial and temporal distribution of CW laser radiation at the surface
of an infinite cone model the temperature distribution [9] is
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where I(x) is the complete Gamma function and I'(x;y) is the incomplete gamma
function.

In the case for which the cone degrades into a plane (B,=%/2) the temperature
distribution along the axis (8=0) is

©
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where jerfc (x)=j°°erfc (z) dz and erfc is the error function. The planar case
X

correspond to the temperature distribiution in the laser irradiated anode.

1.2 THE VOLUME GENERATION OF HEAT
[1.2.1 THE CALCULATION OF CURRENT DISTRIBUTION

 In this section we will consider the temperature distribution in the emitter tip by
resistive generation of heat due to a tunneling current flow across the STM junction.
To avoid a singularity in the current density at the apex of the cone, we assume that in

the region denoted as 1 for 0 s1 < c (in fig.2), the constant current density Jo ~ 10’- 10

amp/cm?2 flows into the region through the finite conical tip surface, This approximation
is not unreasonable because it assume a more realistic current distribution over a finite
area rather than through a singular point. Another justificatioa for this approximation is
that the field in this region decays so rapidly that for r > ¢, it becomes negligible and
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[1.2.3 THOMSON HEAT AS A SOURCE TERM

When both an the electric and heat current exist at the same time in the volume of
a conductor, there can also be Thomson heat produced or absorbed in additionto
resistative or Joule heat. The Thomson heat evolved (or absorbed) per unit volume
per per unit time is given -0y JeVT (When the Thomson heat is absorbed, the Thomson

coefficient O is positive if J and VT are parallel) {11]. As a source of volurﬁc generation

of heat we use the current density obtained in sec. I1.2.1 and the temperature distribution
given in sec. I1.1. The source distribution (i.c., the Thomson heat evolved in this system)
is F(r,t)m.r JoVT. The temperature distribution, with Thomson heat as a source, can be

found from eq. (4):
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no current is assumed to flow through the surface of the cone in the region 2 (see fig.2)

[10]. The spatial polar coordinate r=c~ 3x10"cm defines the lower boundary of region 2.
We also truncate the cone at r=d~ 1mm. To obtain the current density distribution in
region 2, we solve the Laplace equation for the potential of the current field J=-0 VV
satisfying the continuity equation VeJ=0. The resulting current density distribution in
region 2 (¢ sr s d) is given by

Jz (r,B) =-oVV

" @o+1) (™ +d=H @+ 1x"D P (W)

- n+l | 2041 -
n <X (nc+d (n+l)c “)(1‘ 32P(u.)
o0 o |p=p,

where V is the electric potential, o is the electrical conductivity and the current

I 12)

I=lox czsinﬂo in this region is constant.
I1.2.2 JOULE HEAT AS A SOURCE TERM

In this section we calculate the temperature distribution assuming the Joule heat

as a source term. This volume source term is F(r,t)= 7 , where p is the electrical
resistivity. The temperature distribution inside the cone emitter is obtain from eq.(4):

e, 3 I’p
T(r,B,t)=J:dt’J‘le(r.t,r’,t’) Lrdr+ §1 gz (2n1+1)(2n2+1m

1-1 2n;+1 1- 0y-1, 20741 oy~
«[of PPN i Y e [ L 2 Sl
0 Vz

(01 d® 1M (04 1)c ™) (ny P2t 4422 (0,41)c%2)




In the next section, we describe the calculation of the thermoelectric voltage due to
both surface and volume sources of heat.

I11. THERMOELECTRIC POTENTIAL

We have previously considered the spatial and temporal temperature distribution
due to the laser irradiance of the STM junction. This produces not only a temperature
gradiant due to surface generation of heat but also a rectified dc current component
through the junction. The thermal energy in the tip consists of heat brought into
the volume by the heat conduction through the surface as well as resistive heat due
to the current density established by the laser ficld even in absence of an external bias
voltage. In addition, there is a Thomson heat due to the temperature gradient as well
as current flow in the junction. This heat can be either absorbed or evolved into the
system influencing the temperature gradient across the juction. The thermoelectric
potential generated by the field due to the temperature gradiant between two points in

the presence of current can be written as [11]

Ve =) Epedr (15)
= I OTV,T dr (16)
Ty 22
=[ I TdT dT an
=T1S(T1)-ToS(To)- il SdT (18)
[

ds
where Or is related to the thermoelectric power S by o= Td—'f .

Therefore the thermoelectric potential produced across the junction is




Viuge =T1Se(T1) - ToSy(T2> [ :1s, dT +f ;2 S, dT (19)
(] o

where Tyand T are the temperatures of the emitter and anode base, S, and S,
are the absolute thermoclectric powers of the emitter and anode base, respectively.
It is assumed that T,=0 at sufficiently large distances from the apex.

For the sake of completness we also consider the current density due to the spatial
dependence of the chemical potential §. Since this quantity is a function of the
temperature the differential variation in chemical potential with temperature in the
junction can also produce a thermoelectric voltage in the juction [12]. Therefore the total
field produced in the system is

1,1
Etotal= ; + : Vrc -OTV,T ¢/1)]

where J/o is the field produced by the laser irradiation in the absence of an external
applied voltage. The thermoelectric potential generated due to the effective

1
field Ecﬂ:c-V,C-oTVrT in the STM junction is
1
V= [ (; V,{ - orV,T)dr 1)

T, 9% 1, 9% ) T, 95,
frl ar I qu‘erTdT[onTm

(22)
where . and §, are the chemical potentials of the emitter and anode, respectively.

In the case where T1=T,= T (T is the local equilibrium temperature at the junction
and assuming T,=0) the effective thermoelectric potential becomes

-10-



dt, d

v,q--%[T -;Tt%ﬂ[slmszm]-[:(s.-s.m @3)

o dT

However, for the present application, this contribution is of second -order and will
not be included in the determination of Vjyp.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have studied the thermal effects in an STM junction under
laser irradiance. For a tungsten emitter modeled as a cone, we have used a Green
function method to obtain analytic expressions for the temperature distribution with
both surface and volume sources of heat. Using the laser irradiance, resistive and
Thomson heat as the surface and volume sources respectively, we have calculated the
thermoelectric potential contribution to the bias voltage across the junction. Some
specific results we have obtained are summarized below.

The temperature rise in the conical tip due to surface generation of heat varies
almost linearly with laser intensity and heating time and depends strongly on the cone
angle and thermal parameters [fig.3] . In a beating time of about 120 ns with a CW laser

intensity of 1 MW/cm?2, the temperature rise of a conical emitter with half- cone angle

of 15° is about 1100 © K near the apex (within 1 nm) and drops rapidly for distance
beyond a micron from the apex [fig.4].

The temperature distribution due to Joule heat produced by the laser- induced
tunneling current depends strongly on the magnitude of the induced current density

[fig.5]. For densities in the range 10%-107 amp/cm2 the temperature increase is
neglegible because the current density is so small and the thermal conductivity of

the material is high, When the current density is about 10% amp/cm? , the temperature
increase is about 50 ©K. This tcmpcraturc change is approximately uniform near the tip
apex and then begin to drop rapidly for distance beyond 100 nm. When the current

density is greater than 5 x 10° amp/cm? the temperature of the conical emitter (half cone

-11-




angle of 15 °) increases dramatically and is on the order of 2000 °K. These temperatures
already begin to exceed the melting temperature of most metals. For comparision, T, for

tungsten is 3683 °K.

The temperature change due to Thomson heat generated or absorbed by the
system is relatively small compared to the both the laser induced surface heating and
the resistive heating due to the tunneling current because the current flow is small and
consequently the heat transport through the emitter is so small. Therfore the heating or
cooling cffect due to the Thomson heats is negligible compare to the surface and Joule
heating effects.

Lastly the thermoelectric potential is due principally to surface heating and depends
on the intensity of the laser irradiation. The induced thermoelectric voltage due to

surface generation of heat for a laser intensity of 12 MW/cm? is about 10 mV [fig.6].
REFERENCES

(1] L. Arnold and W. Krieger, J. VAC. SCI. TECHNOL. A6 (1988) 465

[2] W. Krieger, H. Koppermann, T.Suzuki, H.Walter, IEEE, Transaction on
Instrumentation and Measurement 38 (1989) 1019

[3] W. Krieger, T. Suzuki and M. Volker, Physical Review B41 (1990) 10229

[4] H.Q. Nguyen and P.H. Cutler, T.E. Feuchtwang, Z.H. Huang, Y. Kuk, P.J.
Silverman , A.A. Lucas, T.E. Sullivan, IEEE Transaction on Electron Device 36 (1989)
2671

[5] T.E. Sullivan, P.H. Cutler, A.A. Lucas, Surface Science 62 (1977)455

[6] W.W. Dolan, W.P. Dyke, and J.K. Trolan, Physical Review, 91 (1953) 1054

[71 S. Grafstrom, J. Kowalski, R. Neumann, O. Prosst, and M. Wortge, J. VAC. SCI.
TECHNOL . A8 (1991) 357

[8] P. Morse and H. Feshbach, Method of Theoretical Physics (McGRAW-HILL, NY.
1954) ch. 7

[9] S.H. Park, P.H. Cutler and N.M. Miskovsky to be published

[10] Jun He, P.H. Cutler, N.M. Miskovsky, T.E.Feuchtwang, T.E. Sullivan and

-12-




M. Chung, Surface Science, 246 (1991) 348
[11] FJ. Blatt, P.A. Schroeder, C.L. Foiles and D. Greig,

lectric Power of M (Plenum Press, NY. 1976) ch. 1
[12] C.C. Williams and H.K. Wickramasinghe, Nature, 344 (1990) 319

-13-




Figure Captions

Fig.1 The infinite cone model. The half- cone angle 8, varies from 0° to 90°.

Fig.2 The flinite cone model. The cone is truncated at r=d (~ 1 mm). The active region
for electron emission is the conical surface between =0 and r=c (~3x 10’ cm).

Fig.3 The laser- induced tempereture rise near the apex (10 A®) vs. heating time for

the infinite cone model. The solid line s for a laser intensity of 1.6MW/cm?and the
dashed line is for 1 MW/cmZ The cone half angle is:(a)15° (6)30° (€)90°. The values of

k=0.68 cm?s!, K=1.78 W/cm°K, and R=0.68.

Fig.4 The laser-induced temperature rise vs. radial distance along the emitter axis

for different cone angles after a heating time of 120 ns with a laser irradiance of

1 MW/cm2. The same value of thermal parameters as in fig.2 are used.

Fig.5 The temperature rise due to Joule heating vs. radial distance along the axis

of the emitter for different current densities. The heating time is 100 ns. The resistivity .

of the tungsten sample was taken to be 5x 103 ohm cm.
Fig.6 The laser induced thermoelectric voltage vs. energy flux of CW laser beam with

different cone angle. The surface generation of heating effect is only considered in this
data and the heating time is 100 ns.
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